Fuzzy neural networks for time-series forecasting of electric load - Generation, Transmission and Distribution, IEE Proceedings-
نویسندگان
چکیده
Three computing models, based on the multilayer perceptron and capable of fuzzy classification of patterns, are presented. The first type of fuzzy neural network uses the membership values of the linguistic properties of the past load and weather parameters and the output of the network is defined as fuzzy-class-membership values of the forecast load. The backpropagation algorithm is used to train the network. The second and third types of fuzzy neural network are developed based on the fact that any fuzzy expert system can be represented in the form of a feedforward neural network. These two types of fuzzy-neural-network model can be trained to develop fuzzy-logic rules and find optimal input/output membership values. A hybrid learning algorithm consisting of unsupervised and supervised learning phases is used to train the two models. Extensive tests have been performed on two-years of utility data for generation of peak and average load profiles 24 hours and 168 hours ahead, and results for typical winter and summer months are given to confirm the effectiveness of the three models.
منابع مشابه
Different Methods of Long-Term Electric Load Demand Forecasting a Comprehensive Review
Long-term demand forecasting presents the first step in planning and developing future generation, transmission and distribution facilities. One of the primary tasks of an electric utility accurately predicts load demand requirements at all times, especially for long-term. Based on the outcome of such forecasts, utilities coordinate their resources to meet the forecasted demand using a least-co...
متن کاملAN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کاملGlobal model for short-term load forecasting using artificial neural networks - Generation, Transmission and Distribution, IEE Proceedings-
A global model is presented for short-term electric load forecasting using artificial neural networks. The model predicts the complete curve of the 24 hourly values for the next day. The development of this model consists of three phases: a prior one, in which, starting from historical data, each day is classified according to its load profile by means of self-organising feature maps; the secon...
متن کاملNeural Networks in Electric Load Forecasting:A Comprehensive Survey
Review and classification of electric load forecasting (LF) techniques based on artificial neuralnetworks (ANN) is presented. A basic ANNs architectures used in LF reviewed. A wide range of ANNoriented applications for forecasting are given in the literature. These are classified into five groups:(1) ANNs in short-term LF, (2) ANNs in mid-term LF, (3) ANNs in long-term LF, (4) Hybrid ANNs inLF,...
متن کاملA NEW APPROACH BASED ON OPTIMIZATION OF RATIO FOR SEASONAL FUZZY TIME SERIES
In recent years, many studies have been done on forecasting fuzzy time series. First-order fuzzy time series forecasting methods with first-order lagged variables and high-order fuzzy time series forecasting methods with consecutive lagged variables constitute the considerable part of these studies. However, these methods are not effective in forecasting fuzzy time series which contain seasonal...
متن کامل